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Stochastic Resonance in Chaotic Dynamics 

G. Nicol is ,  1 C. Nicol is ,  2 and D.  McKernan I 

It is suggested that chaotic dynamical systems characterized by intermittent 
jumps between two preferred regions of phase space display an enhanced 
sensitivity to weak periodic forcings through a stochastic resonance-like 
mechanism. This possibility is illustrated by the study of the residence time 
distribution in two examples of bimodal chaos: the periodically forced Duffing 
oscillator and a 1-dimensional map showing intermittent behavior. 
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1. I N T R O D U C T I O N  

In this paper  a class of  dynamical  systems giving rise to deterministic chaos 
is identified which exhibit enhanced sensitivity to weak external periodic 
forcings through a stochastic resonance-like mechanism. 

In its classical setting (1 3) stochastic resonance deals with one-variable 
bistable systems subjected simultaneously to a stochastic forcing and to a 
weak periodic forcing, 

dx 8U 
+ g(x)(2D) m F(t) + eh(x) cos(cot + (p) (1) 

dt 8x 

where U is a bistable potential;  (2D) u2 F(t) is a Gaussian white noise of 
variance 2D; g(x) and h(x) are coupling terms; and e, co, and q) are, 
respectively, the amplitude, frequency, and phase of the periodic forcing. 

As is well known,  for 

~ 1 ,  3U/D>> I, co<-..Z~r ~ (2) 
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A U and ~i~r being, respectively, the potential barrier and the Kramers time, 
the response of the variable x to the periodic forcing is enhanced by the 
presence of noise. Before going to the main subject of the present paper, it 
is instructive to comment on the origin of this sensitivity. The key point lies 
in the perturbative solution of the Fokker-Planck equation associated with 
(1). To the dominant order in r one finds an expression of the form (4-6) 
[taking for simplicity h(x)= 1 ] 

)-1 

where [0) and I1) are, respectively, the invariant eigenvector and the 
eigenvector corresponding to the smallest eigenvalue, 2 1 ~ c ) ,  of the 
unperturbed Fokker-Planck operator. Performing the scalar product in (3) 
using the explicit form of [0), one then finds that the perturbation 
parameter e appears through the combination 

8elf D,~12+C~ 2 [terms of 0(1)] (4) 

For D small and under the conditions of (2), 21 and co are also very small 
and the effective e is thus considerably enhanced. One may understand this 
enhancement by realizing that a bistable weakly noisy system is in an 
almost critical state, in the sense that the Fokker-Planck operator 
possesses an eigenvalue 21 close to zero. This makes it very sensitive to 
disturbances of a certain type, such as weak periodic forcings. 

As is well known, in many respects deterministic chaos shares the 
properties of random noise. Recently this idea has been further implemented 
in discrete-time mappings by showing that, under certain conditions, deter- 
ministic chaos can be mapped in an exact manner into a stochastic process 
governed by a master equation. (7'8) The basic idea is to perform finite 
coarse-graining by choosing a suitable partition in state space, to project the 
fine-grained evolution described by the Perron-Frobenius (or Liouville) 
equation onto the partition, and to require that the evolution of the resulting 
probability vector be generated by a time-independent transition matrix. 
One obtains in this way a Chapman-Kolmogorov condition imposing 
constraints on the partition to be chosen and on the type of dynamical 
systems amenable to such a description. Alternatively, for dissipative flows 
for which the above mapping has not yet been carried out in a systematic 
manner, it has been shown that the evolution may sometimes be cast into 
a form in which a "deterministic" and an "effective noise" part can be 
identified. (9. lo) 
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We are now in the position to formulate the main thesis of the present 
paper: chaotic dynamical systems characterized by intermittent jumps 
between two preferred regions of phase space should display, on the grounds 
of the above analogies, an enhanced sensitivity to external periodic forcings 
through a stochastic resonance-like mechanism. Contrary to systems of the 
form of Eq. (1), this sensitive response should exist in the absence of noise, 
since chaos generates its own "effective" noise in a spontaneous manner. 

In the sequel the validity of this idea will be illustrated on two 
examples of bimodal chaos: the periodically forced Duffing oscillator, and 
a 1-dimensional map showing intermittent behavior. In each case we first 
present the main features of the unperturbed system from the standpoint of 
our main thesis (Sections 2 and 4), and subsequently (Sections 3 and 5) we 
analyze its response to a weak periodic forcing, with special emphasis on 
the residence time statistics. The main conclusions are drawn in Section 6. 

2. EXAMPLE OF B I M O D A L  CHAOS:  THE PERIODICALLY 
FORCED DUFF ING OSCILLATOR 

One of the most extensively studied examples of deterministic chaos is 
the periodically forced Duffing oscillator O1) 

d2x dr, 
dt~- 5- = -c~ ~-  + x - x 3 + 7 cos COot (5) 

As is well known, for certain ranges of values of 7, COo, and 6 the 
additive forcing term 7 cos COot, hereafter referred to as primary forcing, 
generates a chaotic attractor reflected by aperiodic jumps between the two 
stable fixed points x_+ = __1 of the unperturbed system. The third fixed 
point x o = 0 in the absence of the forcing behaves as a saddle, whose stable 
and unstable manifolds play an important role in the structure of the 
chaotic attractor. 

Figure la depicts the phase space portrait of the system for ~ = 0.15, 
7 = 0.30, and COo = 1. In contrast to the Lorenz model, another classical 
example of deterministic chaos, where the system spends most of its time 
around zero, it appears here that the system spends most of its time around 
the states x§ and x_ .  This should make the Duffing model a good example 
of bimodal chaos. Figure lb provides the implementation of this conjecture 
on the histogram P(x) of the values of the variable x. Notice, however, that 
despite the clear-cut difference between the probabilities P( + 1) and P(0), 
the bimodality is much less pronounced than in a stochastic bistable system 
subject to weak noise. The main reason behind this difference is that in a 

822/70/1-2-9 



128 

- 1  

_l 1 
I 
O 

Nicolis et  al.  

N 

~ 0 0 0  

1 0 0 0  

I I I I I I I I I I I I 

b 

":.'v('k~ ;~7:.);, 
~:??-~"?'~:K~=.=~. ~ ~ ' . i  '?-~'.'~ 

~ . . v . . "  ~; ,",'~y. .-. ..'.::."y..'~,=ev.-'.~..'.y~','.:. -~ '.<..'~ ; ;. ,'iI?'.':.. ~(. 

~V;'.:.iv.'.:'.':?.'. k':..:'~:'.~'. '~i:L :5'@ ".]-" .-A-A -. # .f;:'.'d.~.iA:~::'['#-:'.~'.f..i:'. ~.:.~(A'.'.~ 

�9 ":.'~ 2;.'~.i': ~2"q-'(~\" '~.-'r \'~" \.5' .)-q i" '~:."~-~qX:".q6'(&. 'c.% i'~i'-td:" ~ ~', :..:.:-.'..--..z 7"  ;::-.5.: 5" '.--". 4..: 7" 5u .5 4 @ "  .'5;.:..'#~ .'~ .~. ',.?~?-... ~q':i. " 

:.?;.:2..~:.:.~?. (~:.:..?;~;... ?.̀ ?;....̀ ;.:.~..;`~:~;.:.;~..~:.i~:.:.};..~;...7?~:.:.~;.4.I`?;~:.~. ?..s 
.`....~V.~..:..~..3..!...~....~.:.2....:~..:.!.~;.':..!.&.%~.V.!.4.~:?~::~ ~-.!'.?.!.'&'.'?''~:?-<.'~'-'?.?:?..~i 

-1 0 1 x 

Fig. 1. (a) Phase portrait and (b) histogram of the variable x for the periodically forced 
Duffing oscillator, Eq. (5). Parameter values: 6=0,15, 7=0.30, o)0=1. The histogram is 
drawn on the basis of 20,000 equidistant data points obtained from integration of Eq. (5). 

typical chaotic attractor internal variability is macroscopic, comparable to 
the values of the observables themselves. 

Figure 2 depicts the probability distribution of residence times in 
the right part of phase space ( x > 0 ) .  We see that, instead of a smooth 
exponential-like distribution characteristic of a Markov process one 
obtains a sequence of discrete peaks centered at ~ 4 ,  9, 15, and 21. This 
property is to be traced back to the deterministic origin of the system, as 
a result of which the jumps between the two parts of phase space occur at 
preferred times. As it turns out, the mean transition time is i ~  8.2, the 
dispersion around this mean being of comparable value. Notice that none 
of these times is related in a simple manner to the forcing period, To = 2m 

Although a quantitative modeling of the bimodality and the residence 
time distribution is not available, the following qualitative interpretation 
can be advanced. One assimilates the system to an overdamped double-well 
system, the effective potential being (up to a constant) 

X 2 y 4 

U =  - ~- +-~- (6a) 
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Fig. 2. Probability distribution of residence times of the x variable in the region x>0, 
obtained on the basis of 1000 transitions across the boundary x = 0. Parameter values as in 
Fig. 1. 

The extrema of this potential are x_+ = _1 (minima) and X o = 0  
(maximum), the potential barrier being AU+ =1/4.  Chaos is causing 
transitions between the two wells at x+ and is assimilated to an effective 
noise. Typically this noise is a complex, highly correlated process, but for 
the purposes of qualitative understanding we assimilate it to a Gaussian 
white process. We can estimate the variance Dcf~ of this effective noise by 
the relation 

Pmax/ Pmin <,~ exp(A U/D~rf) (6b) 

From Fig. lb, Pma~/Pmin~l.5, yielding Dcff,,~0.5. This gives a Kramers  
time 

%:r "~ 2n [ U"(1 ) U"(0)l -1/2 e~V/D~ 6.7 (6C) 

which is reasonably close to the simulation result of f ~ 8.2, considering the 
simplicity of the model. 

3. R E S P O N S E  TO A S E C O N D A R Y  P E R I O D I C  F O R C I N G  

We now submit the periodically forced Duffing oscillator, Eq. (5), to 
a secondary periodic forcing in the form of an additive contribution 
~ cos cot, e<7 .  

Figure 3 depicts the effect of this perturbation on the residence time 
distribution. More specifically, it shows how the probability mass around 
the principal peak of Fig. 2 (3 ~ z ~< 5) varies with the forcing period. A 
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Fig. 3. Dependence of the probability mass P around the principal peak of Fig. 2 on the 
period T of a secondary forcing s cos ~ot acting on Eq. (5). s = 0.001 and other parameter 
values as in Fig. 1. Notice the enhancement of the response at T =  9 and T =  14. 

strong response (of more than 5% for a forcing amplitude of 0.001) is 
observed at a forcing period around T = 9  and, to a lesser extent, .at a 
period around T =  14. On the other hand, no clear-cut signature of the 
secondary forcing on the power spectrum or the signal-to-noise ratio 
(SNR) can be identified. 

Figure 4 illustrates the effect of the secondary forcing of T =  9 on the 
residence time distribution in the x > 0 region. We see that the forcing 
induces, indeed, a substantial reshuffling of the residence time distribution 
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Fig. 4. Probability distribution of residence times of the x variable in the region x > 0 for the 
periodically driven Duffing oscillator in the presence of a secondary forcing of period T = 9. 
Parameter values as in Fig. 3. 

2 0 0  - 

1 0 0  - 



Stochastic Resonance in Chaotic Dynamics 131 

reflected by a depression of the dominant peak, an enhancement of the 
secondary one, and a drift of the mean residence time to a higher value. 

Let us outline a qualitative interpretation of these results. First, the 
absence of signature of the forcing in the SNR can be understood on the 
basis of ref. 3, since for small perturbation amplitude e the SNR reduces to 

S N R ~ x / ~  2 1 e_AU/De~e2 ~ �9 [terms of O(1)] (7) 
4D err 

which is very small indeed for e =  10 _3 or so. On the other hand, the 
enhancement in linear response given by Eq. (4) leads to an effective 
forcing amplitude 

Cefr=Daf)21+m2~Derr.~/~exp ~10e (8) 

showing that nontrivial effects can indeed be expected. 
We now turn to the period dependence of the response at the level of 

the residence time distribution. A first comment to be made is. that this type 
of response does not fully fit the classical stochastic resonance setting since 
it does not show a monotonic enhancement for increasing periods, but, 
rather, an enhanced sensitivity to preferred periods. This is closer to tradi- 
tional resonance. On inspecting Fig. 2 one recognizes that the forcing 
periods leading to maximal sensitivity correspond in fact to the second 
(and, to a lesser extent, the third) largest peak of the residence time 
distribution of the unperturbed system. One can argue, then, in the spirit 
of ref. 12, that statistically speaking, the forcing facilitates exit at larger 
values of r since it affects coherently the probability mass that is bound to 
exit at ~ = 9 and, to a lesser extent (once every two exits), the one to exit 
at the primary peak around ~ ,~ 4. 

4. B I M O D A L  C H A O S  IN A O N E - D I M E N S I O N A L  
I N T E R M I T T E N T  M A P  

As a second example of bimodal chaos we consider a family of piece- 
wise linear maps defined by (see Fig. 5) (13) 

f(x) = f~(x) 0 ~< x ~< 1/2 

= 1 - f l ( 1 - x )  1 /2 <x ~< l  (9a) 

with 

f~(0) = 0, f~(1/2) = 1 

fl(x)=(l+~)x, O<~x<a<l/2, 6 4 1  (9b) 
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Fig. 5. The map defined by Eqs. (9a)-(9b) for & = 0.01, a = 0.4481. The figure is obtained on 
the basis of 20,000 data points. 

The system exhibits a small-scale "laminar" mot ion  in the regions 
where the slope is close to unity, followed by a number  of "turbulent" 
bursts and subsequent reinjections back to either of the laminar regions. 
On  these grounds  the invariant  probabili ty distribution of the x variable is 
expected to show two pronounced  peaks located in these regions. Figure 6, 
d rawn for the parameter  values 6 = 0 . 0 1 ,  a=0 .4481 ,  shows that this is 
indeed the case. Actually, for these parameter  values the angular  point  a is 
mapped  on x = 1/2 after exactly two iterations. There exists, then, a 4-cell 
M a r k o v  part i t ion defined by x = 0 ,  f(a), 1/2, f ( 1 - a ) ,  1 on which the 
dynamics  is mapped  onto  a first-order Markov  process governed by a time- 
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Fig. 6. Invariant probability density of map (9a)-(9b) for the parameter values of Fig. 5. 
Notice the piecewise constant character of the density, due to the existence of an exact 
Markov partition. 
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independent stochastic matrix. (7'8) The eigenvalues of this transition matrix 
are given by 21=0.0848, 2 ~ = - 0 . 0 8 6 3 ,  23=0.9818, and 24=1.0000. 
The eigenvector corresponding to 24 is the invariant state of the system 
as given, precisely, by Fig. 6, whereas time-dependent properties are 
dominated by the next largest eigenvalue 23. Much as in the Kramers 
problem, the relevant time scale, given by 1/Jln 231 ~ 54.4, is indeed long. 
Detailed calculation shows that it is controlled by 1/6, c5 being the devia- 
tion from slope one in the laminar region. We see that the system at hand 
possesses an inherent sensitivity measured by a "susceptibility factor" of the 
order of 1/6 or of 1/]ln 23[. These properties, established analytiealy thanks 
to the existence of a Markov partition, are expected to hold true for other 
parameter values provided that the deviation 6 from slope one in the 
laminar region remains small. Independently of any Markov partition, for 
maps which are symmetric about (1/2, 1/2) one can also show (1~ that 
densities initially symmetric about x = 1/2 remain so in their subsequent 
evolution. Furthermore, on the basis of the Lasota-Yorke theorem, (14] 
f possesses a smooth invariant probability measure. 

Figure 7 depicts the numerically simulated probability distribution of 
residence times in the part of the phase space given by f (1  - a ) <  x < 1. The 
difference with Fig. 2 is striking, the picture being now much closer to the 
one corresponding to a noise-driven system. This is due to the existence of 
the Markov partition and, particularly, the choice o f f ( ! - a )  as the exit 
point of the trajectory. 

A qualitative interpretation of Fig. 7 may be advanced on the basis of 
the idea that the distribution of residence times is dominated by the 
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Fig. 7. Probability distribution of residence times of the system of (9a)-(9b) in the region 
f ( l - - a ) <x<  1, obtained on the basis of 5000 transitions across the boundary f(1-a) .  
Parameter values as in Fig. 6. 
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behavior in the laminar region. To be specific, choosing the region 
0 < x < a, one has from (9a) 

X ,+x=(1  + 6 ) x ,  

or, subtracting x ,  on both sides and performing the limit of continuous 
time in the spirit of ref. 15, 

dx 
w = ~ X  
dt 

Integrating t between t = 0 and t = v (the residence time) and x between Xo 
and a (the exit point), one finds 

Xo = ae - ~  (10) 

On the other hand, by virtue of conservation of probability, 

p(~) = ~(Xo) dXo 
dr 

where ~(x0) is the probability density of Xo. Utilizing (10) and assuming 
uniformly distributed initial conditions Xo in the interval 0 < x < a  
[fi(Xo) = 1/a],  one finds 

p(r) = 3e -a~ (11) 

which looks qualitatively like Fig. 7 and predicts an average value f = 1/& 
For  the parameter value adopted here, 6--0.01, this gives f = 100, in good 
agreement with the value f ~ 102 deduced from the numerical simulation. 

5. THE PERIODICALLY FORCED I N T E R M I T T E N T  M A P  

We now consider the effect of a weak external periodic forcing of zero 
mean on the system studied in the preceding section, In order to remain 
within the unit interval, we first choose a multiplicative forcing amounting 
to a modulation of the slope in the map [Eqs. (9a)-(9b)]  by a factor of 

= 0.001, in the form of a square pulse of period T. 
Figure 8 summarizes a first series of results of the numerical simula- 

tions, in the form of the dependence of the mean residence time on the 
forcing frequency (broken line). We see that the response is enhanced as 
the frequency decreases, much as in classical stochastic resonance, the 
maximum difference as compared to the unforced system being about 5 %. 
This corresponds to an amplification factor of 50, coinciding with the 
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Fig. 8. Response of the map defined by (9a}-(9b) to a multiplicative periodic forcing in the 
form of a square pulse of zero mean. The figure represents the dependence of the mean 
residence time versus the forcing frequency. The broken line refers to the result of direct 
numerical simulation of the system [5000 transitions across the boundary f ( 1 -  a)] and the 
full line is drawn on the basis of the analytical formula (13). Forcing amplitude s=0.001, 
other parameters are as in Fig. 6. 

inverse of the logarithm of the system's dominant eigenvalue as discussed 
in the preceding section and in agreement with the general setting of Eq. (4). 

A natural qualitative interpretation of these results can be advanced 
along the lines of Eqs. (10)-(11). We focus on the laminar region, take the 
continuous-time limit, and choose for simplicity a sinusoidal forcing. 
Equation (10) is then replaced by 

x 0 = a e x p  - r - - -  
o.) 

leading to 

p(r) = 5 (1 + ~ sin o)z) exp ( -  ~ )  exp 

cos coz)] (12) 

/] - 5 Z l ~  cos mz (13) 

This function has the general shape of Fig. 7 and predicts a frequency 
dependence of the mean residence time given by the continuous line of 
Fig. 8. The agreement with the result of the direct numerical simulation is 
satisfactory, considering the simplicity of the arguments leading to Eq. (13). 

The shape of the numerically simulated residence time distribution 
itself is qualitatively similar to that of the unperturbed system, Fig. 7. This 
is presumably due to the fact that the Markov partition identified in 
Section 4 still controls the main properties of residence time statistics. 
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As in the perturbed Duffing oscillator, no clear-cut signature of the 
forcing appears at the level of power spectrum. The evaluation of the 
Lyapunov exponent, performed in order to check whether the forced 
system continuously remains in the chaotic regime, shows no noticeable 
sensitivity with respect to the forcing parameters. 

We finally turn to the response of the system to an additive periodic 
forcing in the form of a square pulse of zero mean, It  is easily checked that 
the presence of a strictly additive perturbation of this kind in the right- 
hand side of Eqs. (9a)-(9b) entails that the system is no longer necessarily 
confined in the unit interval. We therefore introduce periodic boundary 
conditions, stipulating that if at a certain iteration the representative point 
is found to be in the region x < 0 or x > 1, it is reinjected, respectively, at 
the points 1 + x and x - 1 of the unit interval. 

Figure 9 summarizes the dependence of the mean residence times on 
the forcing frequency. We notice that to obtain this result one counts as 
transitions from the region f (1  - a) < x < 1 to the region 0 < x < f ( 1  - a) 
only those events in which the boundary f ( 1 - a )  is crossed: in other 
words, "transitions" arising from the reinjection process associated with the 
periodic boundary conditions are discarded. The general trend is the same 
as in Fig. 8 in the sense that the response is enhanced as the frequency 
decreases, but, quantitatively speaking, for the same forcing amplitude the 
response is now much stronger. There is a systematic drift toward lower 
values of residence times, a trend confirmed by the explicit computation of 
the residence time distribution as depicted in Fig. 10. This can be under- 
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Fig. 9. Response of the map of (9a)-(9b), now subjected to periodic boundary conditions, 
to an additive periodic forcing in the form of a square pulse of zero mean. The figure 
represents the dependence of the mean residence time versus the forcing frequency. Parameter 
values as in Fig. 8. 
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Fig.  10. P r o b a b i l i t y  d i s t r i b u t i o n  of  r e s i d e n c e  t i m e s  o f  t he  p e r i o d i c a l l y  fo rced  s y s t e m  of  Fig.  9 

d r a w n  for  a f o r c ing  p e r i o d  T =  500 o n  the  bas i s  o f  5000  t r a n s i t i o n s  a c r o s s  the  b o u n d a r y  

f(1 -a). 

stood by the following simple argument. In a typical event associated with 
a long residence time the system starts near x = 0 or x = 1. In a thin band 
of width e near these points the system will either be subjected to a negative 
(positive) forcing and be brought out of the unit interval, in which case the 
event is discarded, or it will experience a positive (negative) forcing action, 
in which case its residence time will be decreased. 

One can construct analytically the residence time distribution in the 
purely additive case as well. Arguing as in Eqs. (12)-(13), one now obtains 

P(r)=aq-s(~/(o92q-62) dr a (02+ c52(c~sino)r--~coscoz) (14) 

The computation of mean transition times gives the same qualitative 
behavior as in Fig. 9, but, quantitatively speaking, for a given frequency 
value the corresponding curve is systematically shifted upward by an 
amount of 5-10time units. This quantitative discrepancy should be 
attributed to the fact that Eq.(14) discards the reinjection process 
associated with the periodic boundary conditions. 

6. D I S C U S S I O N  

In this paper the response of chaotic dynamical systems exhibiting 
bimodality toward weak external periodic perturbations has been studied 
on two examples: the periodically forced Duffing oscillator and a one- 
dimensional map showing intermittent-like behavior. It was found that in 
certain parameter ranges these systems present an enhanced sensitivity to 
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the periodic perturbation. The mechanism underlying this sensitivity is 
reminiscent of stochastic resonance, with the major difference that the 
presence of noise is not required, since deterministic chaos generates its 
own "effective" noise. 

The central property on which sensitivity was tested was the residence 
time statistics on certain attractor regions, whose boundaries were related 
to the dynamics in a natural manner. Ordinarily, this property is not 
considered in chaos theory. Our study shows that it captures a number 
of interesting features of the underlying system and deserves further con- 
sideration. More traditional properties considered in chaos theory such 
as power spectra appear to be practically insensitive in the limit of weak 
perturbation amplitudes. 

Although our analysis was carried out on two specific examples, the 
conclusions reached are likely to be more general. Indeed, these examples 
are generic illustrations of whole classes of dynamical systems capable of 
giving rise to bimodal chaos. 

Finally, throughout our study it was verified that the perturbed system 
does not undergo a change of regime under the action of the forcing, as 
was the case in recent work on the suppression of chaos in periodically 
driven systems. (16-'8) In other words, the system remains on a single 
attractor, which is continuously deformed under the action of the perturba- 
tion. This is a necessary condition for studying response properties and for 
establishing meaningful analogies with classical stochastic resonance. 
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